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Abstract

We construct integrable n-level generalizations of Jaynes–Cummings and Dicke
models corresponding to the simple (reductive) Lie algebras g of rank n. We
show that for each such Lie algebra there exist many integrable Jaynes–
Cummings and Dicke-type models each of which is associated with the
reductive subalgebras g0 ⊂ g containing Cartan subalgebra h ⊂ g and is
obtained via reduction from Jaynes–Cummings or Dicke-type models with
a maximal number of bosons. We diagonalize the constructed Jaynes–
Cummings and Dicke-type Hamiltonians in the physically most interesting
case of g = gl(n) using a nested algebraic Bethe ansatz.

PACS numbers: 02.20.Sv, 02.30.Ik, 03.65.Fd
Mathematics Subject Classification: 81R10, 81R12, 82B23

1. Introduction

An important quantum mechanical problem is the interaction of the charged matter with
radiation ( see books [1, 2] for reviews).

The Jaynes–Cummings model [3] is the simplest, but yet the non-trivial model describing
the interaction of a two-level atom with an electromagnetic field at the dipole and rotating-
wave approximations. Its generalization, the so-called Dicke model [4], describes the same
interaction of N two-level atoms with an electromagnetic field. Mathematically, the Jaynes–
Cummings model is a system of one boson interacting with a spin, and the Dicke model is
a system of one boson interacting with N spins. The most important property of these two
models is their complete quantum integrability. This feature permits one to find exactly the
spectrum and eigenvectors of these models [5, 6] (see also [7]).

The natural problem, interesting both physically and mathematically, is to find integrable
models that will (approximately) describe the interaction of the Nn-level atoms with many
modes of an electromagnetic field and generalize Dicke and Jaynes–Cummings models. There
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have been a number of papers [8–13] formulating the corresponding models from the physical
considerations in the so-called n-level, (n − 1)-mode case. Surprisingly, there are only few
papers trying to find and analyze possible integrable generalizations of the Dicke and Jaynes–
Cummings models [14, 15].

The main idea of the standard approach to the integrability of the Dicke model [5, 6] is
to represent it as a special limiting case of the trigonometric Gaudin model [16] describing
a system of N + 1 interacting spins. The substantial role in this limit is played by the so-
called Holstein–Primakoff [17] realization of the so(3) � sl(2) spin algebra. This approach
to the integrability of Jaynes–Cummings and Dicke models was a true obstacle [15] on
a way to obtaining n-level integrable generalization of the Dicke model. Indeed, such a
generalization implies utilization the Gaudin model based on sl(n) (or gl(n)) Lie algebra. The
corresponding limiting procedure should be based on the explicit formulae for the Holstein–
Primakoff-type realization of the sl(n) (or gl(n)) algebra and the different coadjoint orbits.
But such realizations are not known in the general case. Some explicit formulae exist only
for the case of the maximally degenerated coadjoint orbits [18, 19]. That is why only the
simplest ‘3-level, 2-mode’ generalized integrable Dicke model was analyzed, and its spectrum
was found [14].

In the present paper, we show that the above difficulty can be overcome by changing the
interpretation of the integrability of Jaynes–Cummings and Dicke models. We propose to
consider the Jaynes–Cummings and Dicke models starting not from the trigonometric Gaudin
model associated with classical trigonometrical r-matrices [20], but from the rational r-matrix
of Yang and the specially chosen quantum Lax operators that satisfy linear r-matrix algebra
with this rational r-matrix. This interpretation is quite natural because after the limiting
procedure applied to the Lax operators of the trigonometric Gaudin model one obtains a
rational Lax operator [6], and it is natural to consider such Lax operators without any limits,
starting at once from the rational r-matrix of Yang. Such interpretation permits us to consider
the generalized Jaynes–Cummings and Dicke models for the arbitrary semisimple (reductive)
Lie algebra g.

In order to describe the rational quantum Lax operators for the generalized Jaynes–
Cummings and Dicke models, we briefly describe the structure of the algebra of Lax
operators corresponding to a rational g⊗g-valued classical r-matrix of Yang. The generalized
Jaynes–Cummings model corresponds to the case of the special g-valued Lax operators L̂(u)

having first-order poles at the points u = 0 and u = ∞, and the generalized Dicke model
corresponds to the case of the special Lax operators L̂(u) having first-order poles at the points
u = ν1, . . . , u = νN and u = ∞. In more detail, the Lax operators of the Jaynes–Cummings
and Dicke models are obtained from the general Lax operators with the above-described pole
structure after the reduction over the subalgebra of central elements. It turned out that there are
different possibilities of such reduction that are labeled by the reductive subalgebras g0 ⊂ g,
or, equivalently by a closed, symmetric subset �0 of a set of roots � of the algebra g. In the
result, we obtain a set of Jaynes–Cummings and Dicke-type quantum Lax operators labeled by
a pair of simple (reductive) Lie algebra g and its reductive subalgebra g0. The corresponding
quantum Hamiltonian of the generalized Dicke model is constructed by using the generating
function Ĉ2(u) = 1

2 tr L̂2(u) and has (up to a constant) the form

Ĥ =
∑

α∈(�/�0)+

α(−K)b̂+
αb̂−

α + g
∑

α∈(�/�0)+

√
α(−K)

N∑
l=1

(
b̂+

αŜ
(l)
−α + b̂−

α Ŝ(l)
α

)
+

N∑
l=1

rank g∑
i=1

((gνl + 1)ki + gci)Ŝ
(l)
i + g

N∑
l=1

∑
α∈�0

cαŜ(l)
α , (1)
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where b̂±
α are bosonic creation–annihilation operators, Ŝ

(l)
±α are the basic elements of the root

spaces of the Lie algebra g in some irreducible representation πl, Ŝ
(l)
i are basic elements of the

Cartan subalgebra h ⊂ g in the same representation, K = ∑rkg

i=1 kiHi is a constant element of
h, and ci and cα are arbitrary constants. The generalized Jaynes–Cummings Hamiltonian is
obtained as a partial case of the generalized Dicke Hamiltonian (1) corresponding to the case
N = 1 and ν1 = 0.

In the physically important gl(n) case Hamiltonian (1) acquires the following form:

Ĥ =
n∑

i,j=1,i<j

(kj − ki)b̂
+
ij b̂

−
ij + g

N∑
l=1

n∑
i,j=1,i<j

√
(kj − ki)

(
b̂+

ij Ŝ
(l)
j i + b̂−

ij Ŝ
(l)
ij

)
+

N∑
l=1

n∑
i=1

((gνl + 1)ki + gci)Ŝ
(l)
ii , (2)

where the operators Ŝ
(l)
ij constitute the representation πl of the Lie algebra gl(n), and Bose

creation–annihilation operators b±
ij together with a unit operator constitute Heisenberg algebra

of the dimension n2 − n + 1, and we put for simplicity cα = 0, α ∈ �0. In the degenerated
cases, when ki = kj for some indices i, j we obtain that the number of the Bose fields in the
Lax operators, Hamiltonian and all other integrals decreases. This reflects the above-described
reduction. The subalgebra g0 in this case coincides with the centralizer of the element of the
Cartan subalgebra K = ∑n

i=1 kiXii . It is necessary to note that in the most degenerated partial
case when ki = kj for i, j ∈ 2, n we recover generalization of the Dicke model constructed
from the other considerations in [15].

Let us briefly comment on the physical interpretation of the Hamiltonian (2). For this
purpose, it will be instructive to interpret the simplified case of the generalized Jaynes–
Cummings model (N = 1, ν1 = 0) and put for simplicity ci = 0, and π1 is a fundamental
representation of gl(n), i.e. Ŝ

(1)
ij ≡ Xij , where (Xij )αβ = δiαδjβ . The corresponding

generalized Jaynes–Cummings Hamiltonian

Ĥ =
n∑

i,j=1,i<j

(kj − ki)b̂
+
ij b̂

−
ij + g

n∑
i,j=1,i<j

√
(kj − ki)

(
b̂+

ijXji + b̂−
ijXij

)
+

n∑
i=1

kiXii (3)

may be interpreted as an approximation of an exact Hamiltonian of the interaction of an n-
level atom with a set of energies Ej = kj , j = 1, n with an electromagnetic field. The third
summand in the Hamiltonian (3) stands for the proper energy of the atom; the first summand
stands for the energy of the electromagnetic field, where wij = kj − ki

1 is the frequency
of the transition between the levels j and i of the atom, and b̂±

ij are the creation–annihilation
operators of photon with this frequency. At last, the second summand stands for the interaction
between the atom and the electromagnetic field at resonance: it corresponds to the transition
of the atom from the state with the energy kj to the state with the energy ki (or from the state
with the energy ki to the state with the energy kj ) with simultaneous creation (annihilation) of
the photon with the frequency wij .

Let us return to the question of the quantum integrability of the models with the constructed
Hamiltonians. In the classical case, the existence of the Lax matrix L(u) with a linear r-matrix
Poisson bracket is equivalent to the integrability of the corresponding Hamiltonian system if the
Hamiltonian is constructed from the expansions in the spectral parameter u of the generating
functions Ck(u) = tr Lk(u) [21]. In the present moment, there is no proof of the quantum
integrability of the classically integrable systems with the linear r-matrix bracket. In the

1 Here and throughout the paper we put for convenience h̄ = 1.
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general case, the problem of a proof of commutativity of quantum operators that correspond
to the higher order in the elements of the Lax matrix classical integrals is very complicated.
It was solved (half-explicitly) only for the case of g = gl(n) and classical r-matrix of Yang in
[22] using the results from the theory of Yangians [23].

Fortunately, in order to find the spectrum of the constructed Hamiltonians (1)–(3) it is
enough to prove commutativity of all second-order integrals that is to prove that

[Ĉ2(u), Ĉ2(v)] = 0.

We do this for the case of arbitrary simple (reductive) Lie algebras g and arbitrary quantum
Lax operators possessing the linear r-matrix bracket with the rational r-matrix of Yang. This
result generalizes a similar result of [24] obtained for the case of g = gl(n). This opens the
way to calculate the spectrum of the model using the nested algebraic Bethe ansatz invented
in [25] for the quantum group case and repeated in [26] for the Lie algebraic case. Due to
the fact that, in [26], the nested Bethe ansatz was considered only in the case of the Gaudin
model, i.e. for the very special choice of the Lax operator L̂(u), we diagonalize Ĉ2(u), find
its spectrum and Bethe equations for the case of an arbitrary Lax operator with linear r-matrix
brackets of Yang in a representation possessing ‘vacuum’ vector and in the physically most
interesting case of g = gl(n). In such a way we obtain, in particular, the Bethe equations and
the spectrum of the generalized Dicke Hamiltonian (2).

The structure of the present paper is as follows: in section 2, we describe the algebra of
the quantum Lax operators and prove the quantum commutativity of the generating function
of the second-order integrals. In section 3, we obtain Lax operators and Hamiltonians of
the generalized Dicke and Jaynes–Cummings models. At last, in section 4, in the case of
g = gl(n) we diagonalize the generating function of the second-order quantum integrals using
the nested algebraic Bethe ansatz.

2. Quantum integrability and rational r-matrices

2.1. Algebra of Lax operators and rational r-matrices

Let g be a simple Lie algebra or reductive Lie algebra gl(n). Let {Xα|α = 1, 2, . . . , dim g}
be some basis in g with the commutation relations

[Xα,Xβ ] =
dim g∑
γ=1

Cαβ
γ Xγ . (4)

Let us consider the classical r-matrix of Yang:

r12(u − v) = 	12

(u − v)
=

∑dim g

α,β=1 gαβXα ⊗ Xβ

(u − v)
, (5)

where gαβ are the components of nondegenerate invariant metric on g defined as follows:
gαβ = (Xα,Xβ), ( , ) is an invariant scalar product on g, Xα are elements of g dual to the
elements Xα: (Xα,Xβ) = δβ

α .
Having a classical r-matrix it is possible to introduce in the space of the g-valued functions

of u with operator coefficients the structure of a Lie algebra:

[L̂1(u), L̂2(v)] = −[r12(u − v), L̂1(u) + L̂2(v)], (6)

where L̂1(u) = L̂(u) ⊗ 1, L̂2(v) = 1 ⊗ L̂(v) and L̂(u) = ∑dim g

α=1 L̂a(u)Xα .

4
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In the component form, we have the following expression:

[L̂α(u), L̂β(v)] = −
∑dim g

γ=1 C
γ

αβ(L̂γ (u) − L̂γ (v))

u − v
, (7)

where C
γ

αβ are structure constants of g in the dual basis [Xα,Xβ ] = ∑dim g

γ=1 C
γ

αβXγ .

Remark 1. The explicit form of L̂(u) as a function of u depends on the concrete physical
model under consideration. Below we will be mainly interested in the Lax operators L̂(u) that
correspond to the generalized Jaynes–Cummings and Dicke models. But first we will remind
about the relations the classical r-matrix structure and quantum integrable systems for the case
of the arbitrary rational Lax operators.

2.2. Quantum integrals and classical r-matrix

In the case of a classical Hamiltonian system with a r-matrix Poisson bracket one automatically
obtains Poisson-commutative generating functions of the classical integrals using invariant
functions of the underlying simple Lie algebras [21]. In the quantum case, the situation is
more complicated due to the problem of ordering. That is why one has additionally proved
the commutativity of the generating functions of quantum integrals. For our purposes it will
be sufficient to prove the commutativity of generating functions of the second-order integrals.

The following theorem holds true.

Theorem 2.1. Let g be a semisimple Lie algebra (or reductive Lie algebra gl(n)). Let
gαβ ≡ (Xα,Xβ) be the components of the standard invariant nondegenerate metric on g. Let
us define the following operator:

Ĉ2(u) =
dim g∑
α,β=1

gαβL̂α(u)L̂β(u), (8)

where the operators L̂α(u), L̂β(u) satisfy the linear r-matrix bracket (7). Then,

[Ĉ2(u), Ĉ2(v)] = 0.

Remark 2. Note that in the cases of classical matrix Lie algebras gl(n), so(n) and sp(n) one
may simply put that

Ĉ2(u) = 1
2 tr L̂2(u).

Proof. Theorem is proved by direct verification. By direct calculation we obtain

[Ĉ(2)(u), Lβ(v)] =
⎡⎣dim g∑

α,β=1

gαδL̂α(u)L̂δ(u), L̂β(v)

⎤⎦
=

dim g∑
α,β,γ,δ=1

(
gαδL̂α(u)C

γ

δβ

(L̂γ (u) − L̂γ (v))

v − u
+ gαδC

γ

αβ

(L̂γ (u) − L̂γ (v))

v − u
L̂δ(u)

)

=
dim g∑

α,β,γ,δ=1

C
γα

β

(L̂α(u)L̂γ (u)− L̂α(u)L̂γ (v))

v − u
+ C

γδ

β

(L̂γ (u)L̂δ(u) − L̂γ (v)L̂δ(u))

v − u

=
dim g∑

α,β,γ=1

C
γα

β

(L̂α(u)L̂γ (v) + L̂γ (v)L̂α(u))

u − v
,

5
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where we have used the skew symmetry of C
γα

β in the indices γ and α. By analogous direct
calculations, using the above-proved equality, we obtain

[Ĉ2(u), Ĉ2(v)] =
⎡⎣Ĉ2(u),

dim g∑
α,β=1

gβδL̂β(v)L̂δ(v)

⎤⎦
=

dim g∑
α,β,δ=1

Cγαδ

(
L̂α(u)L̂γ (v)L̂δ(v)

u − vd
+

L̂γ (v)L̂α(u)L̂δ(v)

u − v

)

+
dim g∑

α,β,γ=1

Cγαβ (L̂β(v)L̂α(u)L̂γ (v) + L̂β(v)L̂γ (v)L̂α(u))

u − v

=
dim g∑

α,β,γ=1

Cγαβ [L̂α(u), L̂γ (v)L̂β(v)]

u − v

= −
dim g∑

α,β,γ,δ=1

Cγαβ

(
Cδ

αγ (L̂δ(u) − L̂δ(v))L̂β(v)

(u − v)2
+

Cδ
αβL̂γ (v)(L̂δ(u) − L̂δ(v))

(u − v)2

)

= −
dim g∑
β,δ=1

gβδ(L̂δ(u)L̂β(v) − L̂β(v)L̂δ(u))

(u − v)2

= −
dim g∑

β,δ,γ=1

gβδC
γ

βδ(L̂γ (u) − L̂γ (v))

(u − v)3
= 0,

where Cγαβ = ∑dim g

β=1 gβδC
γα

β , and we have used first a skew symmetry of Cγαβ in all indices,

the fact that
∑dim g

α,β=1 Cαβγ Cδ
αγ = gβδ , skew symmetry of C

g

βδ in the indices β and δ and
symmetry of gβδ in these indices.

Theorem is proved. �

In the end of this subsection, let us consider a first-order generating function:

Ĉ1(u) = tr L̂(u).

By direct calculation one can prove the following proposition.

Proposition 2.1. Let g = gl(n) and the operators L̂1(u), L̂2(u) satisfy the linear r-matrix
bracket (6) with the classical r-matrix of Yang. Then Ĉ1(u) is a generating function of linear
Casimir operators of the bracket (6), i.e.

[Ĉ1(u), L̂α(v)] = 0.

Remark 3. We will use the property of Ĉ1(u) to be a generating function of Casimir operators
while diagonalizing the generating function of the quantum integrals Ĉ2(u) by means of the
nested algebraic Bethe ansatz.

6
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3. Generalized J–C and Dicke models

3.1. The generalized Jaynes–Cummings model

In this subsection, we will introduce generalized Jaynes–Cummings models. For this purpose
we will first consider the corresponding Lax operators. In more detail, let a Lax operator have
first-order poles at the points u = 0 and u = ∞:

L̂(u) = uL̂(−2) + L̂(−1) + u−1L̂(0), where L(k) =
dim g∑
α=1

L̂(k)
a Xα. (9)

The corresponding commutation relations for the components of the operators L̂(k) are deduced
from the commutation relations (7) and have the following explicit form:

[
L̂(0)

α , L̂
(0)
β

] =
dim g∑

α,β,γ=1

C
γ

αβL̂(0)
γ , (10a)

[
L̂(−1)

α , L̂
(−1)
β

] = −
dim g∑

α,β,γ=1

C
γ

αβL̂(−2)
γ , (10b)

[
L̂(−1)

α , L̂
(−2)
β

] = [
L̂(−2)

α , L̂
(−2)
β

] = 0, (10c)[
L̂(0)

α , L̂
(−2)
β

] = [
L̂(0)

α , L̂
(−1)
β

] = 0. (10d)

Bracket (10a) means that the quantum operators
{
L̂(0)

α

}
constitute a Lie algebra isomorphic to

g. Brackets (10b) and (10c) show that the quantum operators
{
L̂(−1)

α

}
,
{
L̂(−2)

α

}
constitute the

Lie algebra of a Heisenberg type with the variables L̂(−2)
α being central. The equalities (10d)

show that the whole algebra of Lax operators is, in this case, the direct sum of the Lie algebra
g and a Heisenberg-type Lie algebra.

The generating function of the second-order quantum integrals has the form

Ĉ2(L(u)) =
2∑

k=−2

ukĈ2
k ,

Ĉ2
2 = 1

2
(L̂(−2), L̂(−2)), Ĉ2

1 = (L̂(−2), L̂(−1)), Ĉ2
0 = 1

2
(L̂(−1), L̂(−1)) + (L̂(−2), L̂(0)),

Ĉ2
−1 = (L̂(0), L̂(−1)), Ĉ2

−2 = 1

2
(L̂(0), L̂(0)),

where ( , ) is an invariant bilinear form on g, and C2(L̂(u)) ≡ 1
2 (L̂(u), L̂(u)).

Hamiltonians Ĉ2
−2, Ĉ

2
1 and Ĉ2

2 are easily shown to be the Casimir operators of the bracket
(10a)–(10d). Operators Ĉ2

0 and Ĉ2
−1 are the non-trivial quantum integrals. As we will show,

they coincide with two second-order integrals of the generalized J–C models.
Note that the Lie brackets (10b)–(10d) contain many central elements, and we may reduce

many of the quantum operators L̂(−2) and L̂(−1) from our system. Due to the fact that the
operators L̂(−2)

α constitute a center of our Lax algebra, we may put them to be equal to zero
or to be proportional to the unit operator. Now we will show that depending on this reduction
the algebra of Lax operators (10) acquires an even larger center.

Proposition 3.1. Let g = g−1 + g0 + g1, be a triangular decomposition of the Lie algebra g,
i.e. [g0, g0] ⊂ g0, [g0, g±1] ⊂ g±1, [g±1, g±1] ⊂ g±1 such that g0 is reductive. Let the value

7
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of central elements L̂(−2)
α be chosen in such a way that L̂(−2)|g±1 = 0, L̂(−2)|[g0,g0] = 0 . Then

L̂(−1)|g0 belongs to the center of the Lax algebra (10).

Proof. Let us first note that the Lax algebra (10) is isomorphic to the quotient algebra
g0,2 = g̃0/J0,2, where g̃0 is a loop space g̃ = g ⊗ Pol(u, u−1) with the so-called
direct-difference brackets [, ]0 corresponding to the decomposition: g̃ = g̃+ + g̃−, g̃+ =
g ⊗ Pol(u), g̃− = g⊗ u−1Pol(u−1) [21] and JP,Q = JP � JQ, JP = g⊗ uP +1Pol(u), JQ =
g⊗ u−(Q+1)P ol(u−1) are ideals in g̃±.

Using the introduced triangular decomposition of g we obtain in the quotient algebra g0,2

the following commutation relations:[
g

(−1)
0 , g

(−1)
0

] ⊂ g
(−2)
0 ,

[
g

(−1)
0 , g

(−1)
±1

] ⊂ g
(−2)
±1 ,

where g
(−1)
0 = u−1g0, g

(−1)
1 = u−1g1, g

(−2)
0 = u−2g0, g

(−2)
1 = u−2g1. From these relations it

becomes clear that after factorizing the corresponding Lie algebra over the central elements
g

(−2)
±1 and elements of g

(−2)
0 of the form u−2[g0, g0] we will have that g

(−1)
0 also becomes the

center in this quotient algebra.
This proves the proposition. �

Using this proposition we can prove the following lemma.

Lemma 3.1. Let the algebra g be semisimple (reductive). Let � be the set of its roots, �+ be
the set of its positive roots, gα be the root space, Xα be its basis element, and Hi be a basis
vector of the Cartan subalgebra h. Let �0 ⊂ � be a closed, symmetric subset of the set of
all roots. Let the element K = ∑rank g

i=1 kiHi be such that α(K) = 0 for α ∈ �0. Then the
following algebra-valued operators

L̂(−2) =
rank g∑
i=1

kiHi, L̂(−1) =
rank g∑
i=1

ciHi +
∑
α∈�0

cαXα +
∑

α∈(�/�0)+

â+
αX−α +

∑
α∈(�/�0)+

â−
α Xα,

L̂(0) =
rank g∑
i=1

ŜiHi +
∑
α∈�+

ŜαX−α +
∑
α∈�+

Ŝ−αXα,

where ci, cα and ki are constants, Ŝ±α, Ŝi are the components of the generalized spin operator
in a root basis, and â±

α are Bose-type creation and annihilation operators:

[Ŝα, Ŝ−α] =
rank g∑
i=1

Ŝiα(Hi),

[Ŝα, Ŝβ] = Nα,β Ŝα+β, where Nα,β = 0 if α + β /∈ �[
Ŝi , Ŝ

±
α

] = α(Hi)Ŝ
±
α ,[

â+
α, â−

β

] = −α(K)δαβ1,[
â+

α, â+
β

] = [â−
α , â−

β ] = 0,

satisfy the commutation relations of the Lax algebra (10).

Proof. Let �0 ⊂ � be a closed, symmetric subset of the set of all roots. Let us define
a subspace g0 in g in the following way: g0 = h +

∑
α∈�0

gα . From the general theory
of semisimple Lie algebras it follows that this subspace is a reductive subalgebra of g, and
each reductive subalgebra of g containing Cartan subalgebra h ⊂ g can be obtained in this
way. It also follows that the complementary space to g0 consists of g1 = ∑

α∈(�/�0)+
gα and

g−1 = ∑
α∈(�/�0)− gα , and g = g0 + g1 + g−1 is the triangular decomposition of g. Moreover,

8
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the space g0/[g0, g0] coincides with the center z0 of the reductive subalgebra g0 and belongs
to the Cartan subalgebra h. The corresponding subspace in h consists of the elements that are
‘orthogonal’ to α ∈ �0: α(h) = 0.

Let us now choose constant central elements (in our Lax algebra) L̂(−2) = K =∑rank g

i=1 kiHi , where constants ki are not arbitrary but such that α(K) = 0 for α ∈ �0.
Then, as follows from the previous proposition, for such defined central elements L̂(−2),

the operator L̂(−1)|g0 also belongs to the center of the Lax algebra and, hence, we may put that
L̂(−1)|g0 = C = ∑rank g

i=1 ciHi +
∑

α∈�0
cαXα , where constants ci, cα are arbitrary. Substituting

these data into the commutation relations (10) we obtain for the nonconstant elements of the
Lax operator the commutation relations described in the lemma. �

Lemma is proven.

Remark 4. The operators â+
α, â−

α constitute a Lie algebra isomorphic to the ordinary
Heisenberg algebra. The isomorphism is established by the rescaling of variables: â+

α ≡
(−α(K))1/2b̂+

α, â−
α ≡ (−α(K))1/2b̂−

α , where the Lie brackets of variables b̂±
α are canonical:[

b̂+
α, b̂−

β

] = δαβ1,
[
b̂+

α, b̂+
β

] = [
b̂−

α , b̂−
β

] = 0.

Example 1. Let g = gl(n). In this case, we have the natural basic elements Xij , which are
n × n matrices with the matrix elements (Xij )ab = δiaδjb and commutation relations:

[Xij ,Xkl] = δkjXil − δilXkj .

The Cartan subalgebra coincides with the algebra of diagonal matrices, and Hi ≡ Xii, i ∈
1, 2, . . . , n is its orthonormal basis. The set of all roots coincides with the linear forms
αij = wi − wj , where wi(Hj ) = δij , and the corresponding properly normalized element of
the root space gαij

is Xαij
≡ Xij (i 	= j). An arbitrary element of the Cartan subalgebra has

the forms K = ∑n
i=1 kiXii and αij (K) = ki − kj .

The reductive subalgebras containing Cartan subalgebra are gl(n)K = gl(n1)⊕ gl(n2)⊕
· · · ⊕ gl(nk), where n1 + n2 + · · · + nk = n. They coincide with the centralizers of the
element K such that ki = kj for i, j ∈ ml + 1, . . . , ml+1, where 0 = m0 < m1 <

m2 < · · · < mk = n, nk = mk − mk−1 and l ∈ 0, 1, . . . , k − 1. In this case we have
�K = {αij |i, j ∈ ml + 1, . . . , ml+1}.

A reductive subalgebra of the maximal dimension is gl(n)0 = gl(1) ⊕ gl(n − 1). It
corresponds to the case k2 = k3 = · · · = kn, k1 	= k2. A reductive subalgebra of the
minimal dimension is gl(n)0 = gl(1) ⊕ gl(1) ⊕ · · · ⊕ gl(1). It degenerates into an Abelian
subalgebra coinciding with a Cartan subalgebra and corresponds to the case ki 	= kj for
ki, kj ∈ 1, 2, . . . , n.

Let us return to the non-trivial integrals of the Jaynes–Cummings model, Ĉ2
0 and Ĉ2

−1.
They acquire (for that described in the lemma Lax operators) the following form:

Ĉ2
0 =

rank g∑
i=1

ki Ŝi +
∑

α∈(�/�0)+

1

2

(
â+

αâ−
α + â−

α â+
α

)
+

1

2

rank g∑
i=1

c2
i +

∑
α∈(�0)+

cαc−α, (11)

Ĉ2
−1 =

rank g∑
i=1

ci Ŝi
+

∑
α∈�0

cαŜα +
∑

α∈(�/�0)+

(
â+

αŜ−α + â−
α Ŝα

)
, (12)

where we have used that {Hi} is an orthogonal basis in h, and a basis element Xα of the space
gα is normalized so that (Xα,X−α) = 1.

9
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A linear combination of these integrals Ĥ = Ĉ2
0 + gĈ2

−1 gives a Hamiltonian of the
generalized Jaynes–Cummings model associated with a Lie algebra g and its reductive
subalgebra g0. In terms of the canonical creation–annihilation operators b̂±

α ≡ (−α(K))−1/2â±
α

it has (up to a constant) the following explicit form:

Ĥ =
∑

α∈(�/�0)+

(
α(−K)b̂+

αb̂−
α + g

√
α(−K)

(
b̂+

αŜ−
−α + b̂−

α Ŝα

))
+

rank g∑
j=1

(gcj + kj )Ŝj
+

∑
α∈�0

gcαŜα. (13)

This Hamiltonian describes the interaction of the m = Ord �/�0 bosons with the generalized
spin operators associated with the Lie algebra g.

Example 2. Let us consider the case g = gl(n) (see example 1) and the case of the generic
element of the Cartan subalgebra K = ∑n

i=1 kiXii such that ki 	= kj for i, j ∈ 1, 2, . . . , n.
The corresponding ‘generic’ Jaynes–Cummings Hamiltonian is

Ĥ =
n∑

i,j=1,i<j

(kj − ki)b̂
+
ij b̂

−
ij ± g

n∑
i,j=1,i<j

√
(kj − ki)

(
b̂+

ij Ŝj i + b̂−
ij Ŝij

)
+

n∑
i=1

(ki + gci)Ŝii ,

(14)

where the generalized spin operators have Lie brackets isomorphic to gl(n) and b±
ij together

with the unit constitute Heisenberg algebra of the dimension n2 − n + 1:

[Ŝij , Ŝkl] = δkj Ŝil − δil Ŝkj , (15)[
b̂+

ij , b̂
−
kl

] = δikδjl1, (16)[
b̂+

ij , b̂
+
kl

] = [
b̂−

ij , b̂
−
kl

] = [
b̂+

ij , Ŝkl

] = [
b̂−

ij , Ŝkl

] = 0. (17)

Example 3. Let g = gl(n) and gl(n)0 = gl(1)⊕gl(n−1). The element K centralized by this
subalgebra has the form K = ∑n

i=1 kiXii, k2 = k3 = · · · = kn, k1 	= k2. The corresponding
‘reduced’ Jaynes–Cummings Hamiltonian reads as follows:

Ĥ = (k2 − k1)

n∑
i=2

b̂+
1i b̂

−
1i + g

√
(k2 − k1)

n∑
i=2

(
b̂+

1i Ŝi1 + b̂−
1i Ŝ1i

)
+ (k1 + gc1)Ŝ11 + k2

n∑
i=2

Ŝii + g

n∑
i,j=2

cij Ŝij , (18)

where b̂±
1j and the unit operator form Heisenberg algebra of the dimension 2n − 1:[

b̂+
1j , b̂

−
1l

] = δjl1,

[Ŝij , Ŝkl] = δkj Ŝil − δil Ŝkj ,[
b̂+

1j , b̂
+
1l

] = [
b̂−

1j , b̂
−
1l

] = [
b̂+

1j , Ŝkl

] = [
b̂−

1j , Ŝkl

] = 0.

In the case cij = 0 it corresponds to the so-called n-level, n − 1-mode generalized Jaynes–
Cummings model [12, 13].

10
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3.2. The generalized Dicke model

Let us now consider the generalized Dicke model. For this purpose we will introduce the
corresponding Lax matrix L̂(u). It will be similar to the Lax operator of the generalized
Jaynes–Cummings models but will have many poles. In more detail, let us consider Lax
operators having first-order poles at the N + 1 points u = ∞, ν1, . . . , νN :

L̂(u) = uL̂(−2) + L̂(−1) +
N∑

k=1

L̂(k)

u − νk

, where L̂(m) =
dim g∑
α=1

L̂(m)
a Xα. (19)

Using commutation relations (7) we obtain the following Lie brackets for the components of
the considered quantum Lax operators:

[
L̂(k)

α , L̂
(k)
β

] =
dim g∑

α,β,γ=1

C
γ

αβL̂(k)
γ , (20a)

[
L̂(−1)

α , L̂
(−1)
β

] = −
dim g∑

α,β,γ=1

C
γ

αβL̂(−2)
γ , (20b)

[
L̂(−1)

α , L̂
(−2)
β

] = [
L̂(−2)

α , L̂
(−2)
β

] = 0, (20c)[
L̂(k)

α , L̂
(l)
β

] = 0 if k 	= l. (20d)

Bracket (20a) means that the linear operators
{
L̂(k)

α

}
constitute a Lie algebra isomorphic

to g for each k ∈ 1, 2, . . . , N . Brackets (20b) and (20c) mean that the linear operators{
L̂(−1)

α

}
,
{
L̂(−2)

α

}
constitute a Lie algebra of Heisenberg type with the variables L̂(−2)

α being
central. The equalities (20d) show that the whole algebra of Lax operators is in this case a
direct sum of the N copies of the Lie algebras g and the Heisenberg-type Lie algebra.

Due to the explicit form of the Lax operator (19), the generating function of the second
order has the form

C(2)(L̂(u)) = u2Ĉ2
2 + uĈ2

1 + Ĉ2
0 +

N∑
k=1

Ĉ2
−k

(u − νk)
+

N∑
k=1

Ĉ2
−2k

(u − νk)2
,

and produces the mutually commuting quantum operators

Ĉ2
2 = 1

2
(L̂(−2), L̂(−2)), C2

1 = (L̂(−2), L̂(−1)), C2
0 = 1

2
(L̂(−1), L̂(−1)) +

N∑
k=1

(L̂(−2), L̂(k)),

Ĉ2
−k = (L̂(−1), L̂(k)) + νk(L̂

(−2), L̂(k)) +
N∑

l=1,l 	=k

(L̂(l), L̂(k))

(νl − νk)
, Ĉ2

−2k = 1

2
(L̂(k), L̂(k)).

Operators Ĉ2
2 , Ĉ

2
1 , Ĉ2

−2k are Casimir operators. Operators Ĉ2
0 and Ĉ2

−k are non-trivial quantum
integrals. As we will show, they coincide with the second-order integrals of generalized Dicke
models.

In order to obtain generalized Dicke models, it is enough to repeat the same reduction
procedure as in the case of the generalized Jaynes–Cummings model. After such a procedure
we will have the following components of the quantum Lax operator L̂(u), defined for the N

11
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copies of semisimple (reductive) Lie algebra g, element K = ∑rank g

i=1 kiHi and subset of roots
�0 such that α(K) = 0 for α ∈ �0:

L̂(−2) =
rank g∑
i=1

kiHi, L̂
(−1) =

rank g∑
i=1

ciHi +
∑
α∈�0

cαXα +
∑

α∈(�/�0)+

â+
αX−α +

∑
α∈(�/�0)+

â−
α Xα,

L̂(k) =
rank g∑
i=1

Ŝ
(k)
i Hi +

∑
α∈�+

Ŝ(k)
α X−α +

∑
α∈�+

Ŝ
(k)
−αXα,

where ci, cα and ki are constants, Ŝ(k)
±α, Ŝ

(k)
i are the components of the generalized spin operator

living at the site k, and â±
α are the ‘creation and annihilation operators’ satisfying the same

commutation relations as in the case of the quantum J–C model. The substitution of variables
â±

α ≡ (−α(K))1/2b̂±
α transforms them to the canonical form.

The second-order integrals Ĉ2
0 and Ĉ2

−k , defined for the above quantum Lax operator,
acquire the following explicit form:

Ĉ2
0 =

N∑
k=1

rank g∑
i=1

ki Ŝ
(k)
i +

∑
α∈(�/�0)+

1

2

(
â+

αâ−
α + â−

α â+
α

)
+

1

2

rank g∑
i=1

c2
i +

∑
α∈(�0)+

cαc−α, (21)

Ĉ2
−k =

rank g∑
i=1

ci Ŝ
(k)

i
+

∑
α∈�0

cαŜ(k)
α +

∑
α∈(�/�0)+

(
â+

αŜ
(k)
−α + â−

α Ŝ(k)
α

)
+ νk

rank g∑
i=1

ki Ŝ
(k)
i +

N∑
l=1,l 	=k

(Ŝ(l), Ŝ(k))

(νl − νk)
. (22)

The Hamiltonian of the generalized Dicke model is a linear combination of all these second-
order integrals:

Ĥ = Ĉ2
0 + g

N∑
l=1

Ĉ2
−l . (23)

In terms of the canonical creation–annihilation operators b̂±
α ≡ (−α(K))−1/2â±

α it acquires
(up to a constant) the following explicit form:

Ĥ =
∑

α∈(�/�0)+

(
α(−K)b̂+

αb̂−
α + g

√
α(−K)

N∑
l=1

(
b̂+

αŜ
(l)
−α + b̂−

α Ŝ(l)
α

))

+
N∑

l=1

rank g∑
i=1

((gνl + 1)ki + gci)Ŝ
(l)
i + g

N∑
l=1

∑
α∈�0

cαŜ(l)
α . (24)

Remark 5. The generalized Jaynes–Cummings model is recovered as a partial case of the
generalized Dicke model corresponding to the case N = 1, ν1 = 0.

Remark 6. In what follows we will put in the Hamiltonians and integrals of the generalized
Jaynes–Cummings and Dicke models cα = 0,∀α ∈ �0. This requirement is necessary in
order to diagonalize these Hamiltonians using the standard algebraic Bethe ansatz technique.

12
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Let us consider the following example which will be the basis in the rest of the paper:

Example 4. Let us consider the case g = gl(n) and gl(n)0 = gl(1) + · · · + gl(1) i.e. element
of the Cartan subalgebra K = ∑n

i=1 kiXii is generic (see example 2). The corresponding
‘generic’ Dicke Hamiltonian reads as follows:

Ĥ =
n∑

i,j=1,i<j

(kj − ki)b̂
+
ij b̂

−
ij ± g

N∑
l=1

n∑
i,j=1,i<j

√
(kj − ki)

(
b̂+

ij Ŝ
(l)
j i + b̂−

ij Ŝ
(l)
ij

)
+

N∑
l=1

n∑
i=1

((gνl + 1)ki + gci)Ŝ
(l)
ii , (25)

where the generalized spin operators have Lie brackets isomorphic to gl(n)⊕N, b±
ij together

with the unit operator form the Heisenberg algebra of dimension n2 − n + 1:[
Ŝ

(m)
ij , Ŝ

(n)
kl

] = δmn
(
δkj Ŝ

(m)
il − δil Ŝ

(m)
kj

)
, (26)[

b̂+
ij , b̂

−
kl

] = δikδjl1, (27)[
b̂+

ij , b̂
+
kl

] = [
b̂−

ij , b̂
−
kl

] = [
b̂+

ij , Ŝ
(m)
kl

] = [
b̂−

ij , Ŝ
(m)
kl

] = 0. (28)

4. Diagonalization

In this section, we will consider diagonalization of the Dicke model (the case of the Lax matrix
with N + 1 poles) via an algebraic Bethe ansatz technique in the physically most interesting
case g = gl(n). We will not consider the Jaynes–Cummings model separately, viewing it as
a partial case of the Dicke model.

The main tool of an algebraic Bethe ansatz approach is the algebra of the Lax operators,
which has the same form for all models possessing the rational r-matrix of Yang (the Gaudin
model, Gaudin model in the external magnetic field and Dicke models, etc). That is why
we will proceed first purely algebraically and will fix the concrete form of the Lax operator
corresponding to the Dicke model only at the end of the process of the diagonalization of the
generating function of quantum integrals.

4.1. General case

Let us consider a case of g = gl(n). In this case, we have the natural basic elements
Xij , i, j ∈ 1, 2, . . . , n, (Xij )αβ = δiαδjβ with the standard commutation relations

[Xij ,Xkl] = δkjXil − δilXkj .

The quantum Lax matrix has the following form: L̂(u) = ∑n
i,j=1 L̂ij (u)Xij . The

corresponding Lie bracket (7) among the components of the Lax operator is as follows:

[L̂ij (u), L̂kl(v)] = 1

(u − v)
(δkj (L̂il(u) − L̂il(v)) − δil(L̂kj (u) − L̂kj (v))). (29)

In particular, the following commutation relations are important for the needs of the nested
Bethe ansatz:

[L̂11(u), L̂1l (v)] = 1

(u − v)
(L̂1l (u) − L̂1l (v)), l > 1, (30a)

13
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[L̂ij (u), L̂1l (v)] = − 1

(u − v)
δil(L̂1j (u) − L̂1j (v)), i, j, l > 1. (30b)

[L̂1j (u), L̂1l (v)] = 0, j, l > 1. (30c)

The generating operator of commutative second-order quantum integrals is

τ̂n(u) ≡ Ĉ2(u) = 1

2

n∑
i,j=1

L̂ij (u)L̂ji(u).

By direct calculation we obtain the following commutation relation of the generating function
and components of the Lax operator:

[τ̂n(u), L̂kl(v)] = 1

(u − v)

n∑
m=1

(L̂km(v)L̂ml(u) − L̂km(u)L̂ml(v)). (31)

This relation is essentially used while diagonalizing τ̂ (u).
Now let us diagonalize τ̂n(u) in a special representation space V with the help of the

nested algebraic Bethe ansatz using the above-obtained formulae. Let V be the space of an
irreducible representation of the algebra of Lax operators. Let us assume that there exist a
vacuum vector Ω ∈ V such that

L̂ii(u)Ω = �ii(u)Ω, L̂kl(u)Ω = 0, where i, k, l ∈ 1, 2, . . . , n, k > l, (32)

and the whole space V be generated by the action of L̂kl(u), k < l on the vector Ω.
The following theorem gives us the spectrum of all integrable quantum systems possessing

the rational gl(n)-valued r-matrix and the highest weight representation (32).

Theorem 4.1. The spectrum of the generating function τ̂n(u) in the representation space V

has the following explicit form:

�n(u) = 1

2

n∑
i=1

�2
ii (u) − 1

2

n∑
i=1

(n − 2i + 1)∂u�ii(u) − �11(u)

M1∑
i=1

1(
u − v

(1)
i

)
+

n−1∑
k=2

�kk(u)

(
Mk−1∑
i=1

1(
u − v

(k−1)
i

) −
Mk∑
i=1

1(
u − v

(k)
i

))
+ �nn(u)

Mn−1∑
i=1

1(
u − v

(n−1)
i

)
+

n−1∑
k=1

Mk∑
i,j=1,i 	=j

1(
u − v

(k)
i

)(
u − v

(k)
j

) +
n−1∑
k=1

Mk∑
i=1

Mk+1∑
j=1

1(
u − v

(k)
i

)(
u − v

(k+1)
j

) , (33)

where ‘rapidities’ v
(k)
i satisfy the following Bethe-type equations:

�11
(
v

(1)
i

) − �22
(
v

(1)
i

) = 2
M1∑

j=1;j 	=i

1(
v

(1)
i − v

(1)
j

) −
M2∑
j=1

1(
v

(1)
i − v

(2)
j

) , (34a)

�k+1k+1
(
v

(k+1)
i

) − �k+2k+2
(
v

(k+1)
i

) = 2
Mk+1∑

j=1;j 	=i

1(
v

(k+1)
i − v

(k+1)
j

) −
Mk∑
j=1

1(
v

(k+1)
i − v

(k)
j

)
−

Mk+2∑
j=1

1(
v

(k+1)
i − v

(k+2)
j

) , k ∈ 1, 2, . . . , n − 3, (34b)

�n−1n−1
(
v

(n−1)
i

) − �nn

(
v

(n−1)
i

) = 2
Mn−1∑

j=1;j 	=i

1(
v

(n−1)
i − v

(n−1)
j

) −
Mn−2∑
j=1

1(
v

(n−1)
i − v

(n−2)
j

) .

(34c)
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Equations (34) can be viewed as a condition of the absence of poles of the function �n(u) at
the points v

(k+1)
i :

res
u=v

(k+1)
i

�n(u) = 0, k ∈ 0, 1, . . . , n − 2; i ∈ 1, 2, . . . , Mk+1.

Sketch of the proof. The diagonalization of τ̂n(u) is performed on the special ‘nested’ Bethe
vectors constructed with the help of the ‘nested’ Bethe ansatz. Its main idea consists in the
recursion procedure based on the chain of the embeddings gl(n) ⊃ gl(n − 1) ⊃ · · · ⊃ gl(2).
We will not give a detailed description of all the recursion procedure due to its lengthy
character. We will briefly describe only its first step.

In more detail, let us consider a subspace V0 ⊂ V consisting of the vectors v such that

L̂11(u)v = �11(u)v, L̂k1(u)v = 0, k > 1. (35)

Using commutation relations in the algebra of the Lax operators it is easy to see that this
subspace is invariant with respect to the action of the subalgebra of Lax operators taking
values in the subalgebra gl(n − 1).

Let us consider the generating function τ̂n(u) and take into account that

τ̂n(u) = 1

2

n∑
i,j=1

L̂ij (u)L̂ji(u) = 1

2
L̂2

11(u) +
1

2

n∑
j=2

(L̂1j (u)L̂j1(u)

+ L̂j1(u)L̂1j (u)) +
1

2

n∑
i,j=2

L̂ij (u)L̂ji(u)

= 1

2
L̂2

11(u) +
n∑

j=2

L̂1j (u)L̂j1(u) +
1

2
∂u

(
n∑

i=1

L̂ii(u) − nL̂11(u)

)
+ τ̂n−1(u),

(36)

where τ̂n−1(u) = 1
2

∑n
i,j=2 L̂ij (u)L̂ji(u) is the generating function of commutative integrals

of a gl(n−1)-valued subalgebra of Lax operators. Using formula (36) we obtain the following
action of the ‘full’ generating function on the vector v:

τ̂n(u)v = 1

2

(
�2

11(u) − n∂u�11(u)
)
v +

1

2
∂u

(
n∑

i=1

L̂ii(u)

)
v + τ̂n−1(u)v.

Due to the fact that Ĉ1
n(u) = ∑n

i=1 L̂ii(u) is a Casimir operator, which is constant in all
irreducible representations, we have that ∂u

(∑n
i=1 L̂ii(u)

)
v = ∂u

(∑n
i=1 �ii(u)

)
v. Hence, in

order to diagonalize the generating function τ̂n(u) of the gl(n)-valued Lax operators one has
to do this also for the generating functions τ̂n−1(u) of the gl(n − 1)-valued Lax operators. At
this point one comes to the next idea used in the nested Bethe ansatz. Namely, in order to have
a correct Bethe ansatz one has to diagonalize on the next step of the recursive procedure not
τ̂n−1(u) acting in the space V0, but some other generating function τ̂

(1)
n−1(u) acting in the space

V0 ⊗ (Cn−1)⊗M .
In more detail, let us consider special vectors in V ⊗ (Cn)⊗M of the form

v(1) =
n∑

i1,...,iM=2

vi1i2...iM ei1 ⊗ ei2 ⊗ · · · ⊗ eiM

such that each vi1i2...iM belongs to the space V0, and ei are basis vectors in the space C
n (vector

columns with unit on the place i and zeros everywhere else). These special vectors constitute

15



J. Phys. A: Math. Theor. 41 (2008) 475202 T Skrypnyk

the subspace V0 ⊗ (Cn−1)⊗M . Let us define the following operator-valued matrix (part of the
Lax matrix):

B̂(u) =
n∑

j=2

L̂1j (u)X1j .

We will need to ‘lift’ this matrix with the non-commuting entries to the tensor products of
the M copies of gl(n), and use the following ‘tensorial’ notations: B̂k(vk) ≡ 1n ⊗ · · · ⊗
B̂(vk) ⊗ · · · ⊗ 1n where B̂(vk) stands in the kth component of the tensor product, and 1n is
the unit matrix in the space C

n. We will also lift the action of τ̂n(u) to the tensor product
V ⊗ (Cn)⊗M in the following trivial way:

T̂M(u) ≡ τ̂n(u)1n ⊗ · · · ⊗ 1n ⊗ · · · ⊗ 1n. (37)

It is evident that operators T̂M(u) on V ⊗ (Cn)⊗M and τ̂n(u) on V act in the same way and
have the same spectrum. This permits to consider the problem of diagonalization of T̂M(u) on
V ⊗ (Cn)⊗M instead of the problem of diagonalization of τ̂n(u) on V .

Let us now consider the Bethe-type vectors of the following form:

v
(
v

(1)
1 , . . . , v

(1)
M

) = B̂1
(
v

(1)
1

) · · · B̂M

(
v

(1)
M

)
v(1). (38)

Let us diagonalize the operator T̂M(u) on V ⊗ (Cn)⊗M using the Bethe vectors (38). By
long and tedious calculations, using the commutation relations (30) and (31) we obtain the
following action formula:

T̂M(u)v
(
v

(1)
1 , . . . , v

(1)
M

) =
(

1

2
�2

11(u) +
1

2
∂u

(
n∑

i=1

�ii(u) − n�11(u)

)
−

M∑
i=1

�11(u)(
u − v

(1)
i

)
−

M∑
i=1

(n − 1)

2
(
u − v

(1)
i

)2 +
M∑

i,j=1;i<j

1(
u − v

(1)
i

)(
u − v

(1)
j

))
v
(
v

(1)
1 , . . . , v

(1)
M

)
+ B̂1

(
v

(1)
1

) · · · B̂M

(
v

(1)
M

)
τ̂

(1)
n−1(u)v(1) +

M∑
i=1

(
�11

(
v

(1)
i

) −
M∑

j=1;j 	=i

1(
v

(1)
i − v

(1)
j

)
− resu=vi

τ̂
(1)
n−1(u)

)
B̂1

(
v

(1)
1

) · · · B̂i(u) · · · B̂M

(
v

(1)
M

)(
u − v

(1)
i

) v(1), (39)

where τ̂
(1)
n−1(u) = 1

2 tr
(
L̂

(1)
n−1(u)

)2
, and L̂

(1)
n−1(u) is defined as follows:

L̂
(1)
n−1(u) ≡

n∑
i,j=2

(
L̂ij (u) +

M∑
k=1

X
(k)
ji(

u − v
(1)
k

))
Xij .

Here X
(k)
ij acts as Xij in the kth multiplier of C⊗M and as the unit operator in other multipliers.

It is easy to show that both L̂
(0)
n−1(u) ≡ ∑n

i,j=2 L̂ij (u)Xij and L̂
(1)
n−1(u) satisfy the linear r-matrix

brackets with the same gl(n − 1)-valued rational r-matrix.
From the action formula (39) it is evident that the vector v

(
v

(1)
1 , . . . , v

(1)
M

)
is an eigenvector

for T̂M(u) with the eigenvalue �n(u), where

�n(u) =
(

1

2

(
�2

11(u) + ∂u

(
n∑

i=1

�ii(u) − n�11(u)

))
−

M∑
i=1

�11(u)(
u − v

(1)
i

)
− (n − 1)

2

M∑
i=1

1(
u − v

(1)
i

)2 +
M∑

i,j=1;i<j

1(
u − v

(1)
i

)(
u − v

(1)
j

) + �
(1)
n−1(u)

⎞⎠ ,
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if v(1) is an eigenvector for τ̂
(1)
n−1(u) with the eigenvalue �

(1)
n−1(u):

τ̂
(1)
n−1(u)v(1) = �

(1)
n−1(u)v(1),

and the following Bethe equations are satisfied:

�11
(
v

(1)
i

) −
M∑

j=1;j 	=i

1(
v

(1)
i − v

(1)
j

) − res
u=v

(1)
i

�
(1)
n−1(u) = 0. (40)

This reduces the problem of finding the spectrum of the generating function τ̂n(u) of the
quantum integrals for the gl(n)-valued Lax operators to the problem of finding the spectrum
of τ̂

(1)
n−1(u) of the generating function of the quantum integrals for the gl(n − 1)-valued Lax

operator possessing additional (in comparison to the initial Lax operator) first-order poles in
the points v

(1)
i , i ∈ 1, 2, . . . , M that solve Bethe equations (40). Proceeding further we come

to the (n− 2) step of the recursion process to the problem of diagonalization of the generating
function of the gl(2)-valued Lax operator. It is diagonalized with the help of an ordinary
algebraic Bethe ansatz, and all the answers for this are known [6]. Substituting them in the
obtained result of our recursion procedure formulae one finally obtains the formulae (33)
and (34).

This finishes our sketch of the proof. �

4.2. Case of the Dicke model

Let us consider a representation of the algebra of Lax operators in a Hilbert space V that
corresponds to the algebra gl(n)⊕N ⊕ HK , where HK is described in the previous sections
Heisenberg algebra, depending on the element K = ∑n

i=1 kiXii . In more detail,[
Ŝ

(m)
ij , Ŝ

(n)
kl

] = δmn
(
δkj Ŝ

(m)
il − δil Ŝ

(m)
kj

)
, (41)[

â+
ij , â

−
kl

] = (kj − ki)δikδjl1, (42)[
â+

ij , â
+
kl

] = [
â−

ij , â
−
kl

] = [
â+

ij , Ŝ
(m)
kl

] = [
â−

ij , Ŝ
(m)
kl

] = 0, (43)

and â+
ij = √

(kj − ki)b̂
+
ij , â

−
ij = √

(kj − ki)b̂
−
ij where b̂±

ij are the canonical creation–
annihilation operators.

Remark 7. Note that in the case of the degeneration of the element K, when ki = kj for some
indices i and j we have that â±

ij = 0, i.e. dimension of the corresponding Heisenberg algebra
decreases.

The Lax operator of the Dicke model in the case cαij
= 0, αij ∈ �0 has the form

L̂(u) = uL̂(−2) + L̂(−1) +
N∑

m=1

L̂(m)

u − νm

, where L̂(−2) =
n∑

i=1

kiXii,

L̂(−1) =
n∑

i=1

ciXii +
n∑

i,j=1,i<j

√
(kj − ki) b̂+

ijXji +
n∑

i,j=1,i<j

√
(kj − ki) b̂−

ijXij ,

L̂(m) =
n∑

i,j=1

Ŝ
(m)
ij Xji .
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A space of the irreducible representations of the algebra of Lax operators will have the
form V = (⊗N

i=1V
λ(i)) ⊗ V HK , where V λ(i)

is a space of an irreducible representation of

gl(n)(m) label by the highest weight vectors λ(m) = (
λ

(m)
1 , . . . , λ(m)

n

)
:

Ŝ
(m)
ii Ωm = λ

(m)
i Ωm, Ŝ

(m)
kl Ωm = 0, where i, k, l ∈ 1, 2, . . . , n,

k < l;m ∈ 1, 2, . . . , N, (44)

V HK is an irreducible representation of the algebra HK with the vacuum vector Ω0:

b̂+
klΩ0 = 0, where k, l ∈ 1, 2, . . . , n, k < l. (45)

(Note that for such a definition of vacuum vector operators b̂+
kl play the role of ‘annihilation’

operators and operators b̂−
kl play the role of ‘creation’ operators.)

It is easy to see that the ‘vacuum’ vector satisfying (32) for the corresponding
representation of the Lax algebra exists and has the form

Ω = Ω0 ⊗ Ω1 ⊗ · · · ⊗ ΩN .

Hence, we can apply in the case of the Lax operators of the Dicke model the whole technique
of the nested algebraic Bethe ansatz, which was described above. We have that in our case

�ii(u) = uki + ci +
N∑

m=1

λ
(m)
i

u − νm

, (46)

where L̂ii(u)Ω = �ii(u)Ω. Substituting this expression in theorem 4.1 we obtain the explicit
form of the spectrum of the generating function τ̂n(u) in the case of the generalized Dicke
model.

We will explicitly calculate the spectrum of the integrals Ĉ2
0 and Ĉ2

−m. The following
corollary of theorem 4.1 holds true.

Corollary 4.1. The spectrum of the integrals Ĉ2
0 and Ĉ2

−m on the Bethe-type vectors has the
following explicit form:

c2
0(M1, . . . ,Mn−1) =

n∑
i=1

(
c2
i

2
+

N∑
m=1

kiλ
(m)
i − 1

2
(n − 2i + 1)ki

)

− k1M1 +
n−1∑
i=2

ki(Mi−1 − Mi) + knMn−1, (47)

c2
−m

({
v

(1)
i

}
, . . . ,

{
v

(n−1)
i

}) =
⎛⎝ n∑

i=1

(νmki + ci)λ
(m)
i +

N∑
l=1,l 	=m

λ
(m)
i λ

(l)
i

νm − νl

⎞⎠ − λ
(m)
1

M1∑
i=1

1

νm − v
(1)
i

+
n−1∑
k=2

λ
(m)
k

(
Mk−1∑
i=1

1

νm − v
(k−1)
i

−
Mk∑
i=1

1

νm − v
(k)
i

)
+ λ(m)

n

Mn−1∑
i=1

1

νm − v
(n−1)
i

,

(48)
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where rapidities v
(k)
i , i ∈ 1, 2, . . . , Mk satisfy the following Bethe-type equations:

v
(1)
i (k1 − k2) + (c1 − c2) +

N∑
k=1

(
λ

(k)
1 − λ

(k)
2

)
v

(1)
i − νk

=
M1∑

j=1;j 	=i

2(
v

(1)
i − v

(1)
j

) −
M2∑
j=1

1(
v

(1)
i − v

(2)
j

) ,

v
(m+1)
i (km+1 − km+2) + (cm+1 − cm+2) +

N∑
k=1

(
λ

(k)
m+1 − λ

(k)
m+2

)
v

(m+1)
i − νk

=
Mm+1∑

j=1;j 	=i

2(
v

(m+1)
i − v

(m+1)
j

) −
Mm∑
j=1

1(
v

(m+1)
i − v

(m)
j

) −
Mm+2∑
j=1

1(
v

(m+1)
i − v

(m+2)
j

) ,

m ∈ 1, 2, . . . , n − 3,

v
(n−1)
i (kn−1 − kn) + (cn−1 − cn) +

N∑
k=1

(
λ

(k)
n−1 − λ(k)

n

)
v

(n−1)
i − νk

=
Mn−1∑

j=1;j 	=i

2(
v

(n−1)
i − v

(n−1)
j

) −
Mn−2∑
j=1

1(
v

(n−1)
i − v

(n−2)
j

) .

Remark 8. The spectrum of the generalized Dicke Hamiltonian (2) on the Bethe-type
vectors is easily found from the above corollary and has (up to a non-sufficient constant

c = ∑n
i=1

( c2
i

2 − ∑N
m=1(n − 2i + 1)ki

)
) the following form:

h
({

v
(1)
i

}
, . . . ,

{
v

(n−1)
i

}) = c2
0(M1, . . . ,Mn−1) + g

N∑
m=1

c2
−m

({v(1)
i }, . . . , {v(n−1)

i

})
.

Remark 9. All the ‘reduced’ Dicke models described in this paper may be considered as
limiting cases of the ‘full’ Dicke model corresponding to the generic element K and the
maximal number of bosonic fields. The difference will be in the number of bosonic fields
entered into the definition of the Lax operator, form of the Bethe vectors and in the form of
corresponding Bethe equations. Indeed, from the explicit form of the Bethe equations it is easy
to see that in the case of the degeneration, for example, when km+1 = km+2 the corresponding
subset of the Bethe equations becomes simpler and coincides with the Bethe equation of the
Gaudin system in an external magnetic field and if, moreover cm+1 = cm+2, with the Bethe
equation of an ordinary Gaudin system.

Example 5. Let us consider the particular example of the spectrum and Bethe equations of the
three-level (n = 3) N-atom Dicke model corresponding to the case of gl(3). The spectrum of
the second-order integrals is the following:

c2
0(M1,M2) =

3∑
i=1

(
c2
i

2
+

N∑
m=1

kiλ
(m)
i − (2 − i)ki

)
− k1M1 + k2(M1 − M2) + k3M2,

c2
−m

({
v

(1)
i

}
,
{
v

(2)
i

}) =
⎛⎝ 3∑

i=1

(νmki + ci)λ
(m)
i +

N∑
l=1,l 	=m

λ
(m)
i λ

(l)
i

νm − νl

⎞⎠ − λ
(m)
1

M1∑
i=1

1

νm − v
(1)
i

+ λ
(m)
2

(
M1∑
i=1

1

νm − v
(1)
i

−
M2∑
i=1

1

νm − v
(2)
i

)
+ λ

(m)
3

M2∑
i=1

1

νm − v
(2)
i

,
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where rapidities v
(k)
i , i ∈ 1, 2, . . . ,Mk, k = 1, 2 satisfy the following Bethe equations:

v
(1)
i (k1 − k2) + (c1 − c2) +

N∑
k=1

(
λ

(k)
1 − λ

(k)
2

)
v

(1)
i − νk

=
M1∑

j=1;j 	=i

2(
v

(1)
i − v

(1)
j

) −
M2∑
j=1

1(
v

(1)
i − v

(2)
j

) ,

v
(2)
i (k2 − k3) + (c2 − c3) +

N∑
k=1

(
λ

(k)
2 − λ

(k)
3

)
v

(2)
i − νk

=
M2∑

j=1;j 	=i

2(
v

(2)
i − v

(2)
j

) −
M1∑
j=1

1(
v

(2)
i − v

(1)
j

) .

5. Conclusion and discussion

Using the technique of classical rational r-matrices and rational Lax operators we have
constructed ‘n-level many-mode’ integrable generalizations of Jaynes–Cummings and Dicke
Hamiltonians labeled by a pair of semisimple (reductive) Lie algebra g and its reductive
subalgebra g0 ⊂ g.

All the constructed n-level many-mode Jaynes–Cummings or Dicke-type Hamiltonians
may be obtained as a reduction of the n-level Jaynes–Cummings or Dicke-type Hamiltonians
with a maximal number of bosons. In particular, in the case of g = gl(n) the maximally
reduced generalized n-level Jaynes–Cummings model is equivalent to the so-called n-level,
n − 1-mode Jaynes–Cummings model in the �-configuration [11–13].

In the case of the Lie algebra g = gl(n) the obtained Hamiltonians may be interpreted
as the approximate Hamiltonians of the n-level atom interacting with an electromagnetic
field or Hamiltonians of the set of N n-level atoms interacting with an electromagnetic field,
respectively. In this case, we have calculated the spectra of all of the constructed Hamiltonians
and the corresponding commuting integrals using the nested algebraic Bethe ansatz technique.

It would be very interesting to find other physical quantities of this model using the
developed technique of the nested Bethe ansatz. In particular, it seems to be possible to
construct correlation functions of the generalized Jaynes–Cummings and Dicke models using
the r-matrix and Bethe ansatz technique. For this purpose it will be necessary to generalize
the approach of [27] from an ordinary to the nested Bethe ansatz case. We plan to return to
this problem in our subsequent publications.
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